
 
Certified Tester Specialist 

 
ISTQB® Mobile Application Testing 

Foundation Level 
 

Syllabus 
 

Version 2019 

 
 

 

Provided by International Software Quality Institute (iSQI) 

International Software Testing Qualifications Board 

 

                                       



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 2 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Copyright Notice 
This document may be copied in its entirety, or extracts made, if the source is acknowledged. 
Copyright Notice © International Software Testing Qualifications Board (hereinafter called ISTQB®)  
 
ISTQB® is a registered trademark of the International Software Testing Qualifications Board. 
 
Authors of Certified Mobile Application Professional – Foundation level (CMAP-FL) syllabus – Jose 
Diaz, Rahul Verma, Tarun Banga, Vipul Kocher and Yaron Tsubery - transferred the copyright to 
ISTQB®. This syllabus was used as a base to create the current document. 
 
Copyright © 2019 by the authors Vipul Kocher (chair), Piotr Wicherski (vice-chair), José Díaz, Matthias 
Hamburg, Eran Kinsbruner, Björn Lemke, Samuel Ouko, Ralf Pichler, Nils Röttger, Yaron Tsubery 
 
This document was produced by a core team from the International Software Testing Qualifications 
Board Mobile Application Testing Working Group. 
 
Vipul Kocher (chair), Piotr Wicherski (vice-chair), José Díaz, Matthias Hamburg, Eran Kinsbruner, 
Björn Lemke, Samuel Ouko, Tal Pe’er, Ralf Pichler, Lloyd Roden, Nils Röttger, Angelina Samaroo, 
Yaron Tsubery 
 
The authors hereby transfer the copyright to the International Software Testing Qualifications Board 
(ISTQB®). The authors (as current copyright holders) and ISTQB® (as the future copyright holder) 
have agreed to the following conditions of use: 
 
Any individual or training company may use this syllabus as the basis for a training course if the 
authors and the ISTQB are acknowledged as the source and copyright owners of the syllabus and 
provided that any advertisement of such a training course may mention the syllabus only after 
submission for official accreditation of the training materials to an ISTQB® recognized Member Board. 
 
Any individual or group of individuals may use this syllabus as the basis for articles, books, or other 
derivative writings if the authors and the ISTQB® are acknowledged as the source and copyright 
owners of the syllabus. 
 
Any ISTQB®-recognized Member Board may translate this syllabus and license the syllabus (or its 
translation) to other parties. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 3 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Revision History 
 

Version Date Remarks 

Alpha  11 May 2018 Alpha Release 

Beta 27 January 2019 Beta Release 

GA 28 March 2019 GA Release 

V2019 3 May 2019 ISTQB® Release 

 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 4 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Table of Contents 

 
Revision History 3	

Table of Contents 4	

Acknowledgments 7	

0.	 Introduction 8	

0.1	 Purpose of this Document 8	

0.2	 The Certified Foundation Level Mobile Application Testing 8	

0.3	 Business Outcomes 8	

0.4	 Examinable Learning Objectives 9	

0.5	 Hands-on Levels of Competency 9	

0.6	 The Examination 9	

0.7	 Recommended Training Times 10	

0.8	 Entry Requirements 10	

0.9	 Sources of Information 10	

1.	 Mobile World - Business and Technology Drivers - 175 mins 11	

1.1	 Mobile Analytics Data 11	

1.2	 Business Models for Mobile Apps 12	

1.3	 Mobile Device Types 12	

1.4	 Types of Mobile Applications 13	

1.5	 Mobile Application Architecture 14	

1.6	 Test Strategy for Mobile Apps 16	

1.7	 Challenges of Mobile Application Testing 17	

1.8	 Risks in Mobile Application Testing 18	

2. Mobile Application Test Types – 265 mins 19	

2.1	 Testing for Compatibility with Device Hardware 20	

2.1.1	 Testing for Device Features 20	

2.1.2	 Testing for Different Displays 21	

2.1.3	 Testing for Device Temperature 21	

2.1.4	 Testing for Device Input Sensors 21	

2.1.5	 Testing Various Input Methods 22	

2.1.6	 Testing for Screen Orientation Change 22	

2.1.7	 Testing for Typical Interrupts 22	

2.1.8	 Testing for Access Permissions to Device Features 23	

2.1.9	 Testing for Power Consumption and State 23	

2.2	 Testing for App Interactions with Device Software 23	

2.2.1	 Testing for Notifications 23	

2.2.2	 Testing for Quick-access Links 24	



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 5 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

2.2.3	 Testing for User Preferences Provided by the Operating System 24	

2.2.4	 Testing for Different Types of Apps 24	

2.2.5	 Testing for Interoperability with Multiple Platforms and Operating System Versions 25	

2.2.6	 Testing for Interoperability and Co-existence with other Apps on the Device 25	

2.3	 Testing for Various Connectivity Methods 25	

3. Common Test Types and Test Process for Mobile Applications – 200 mins 27	

3.1	 Common Test Types Applicable for Mobile Application 28	

3.1.1	 Installability Testing 28	

3.1.2	 Stress Testing 28	

3.1.3	 Security Testing 29	

3.1.4	 Performance Testing 29	

3.1.5	 Usability Testing 30	

3.1.6	 Database Testing 30	

3.1.7	 Globalization and Localization Testing 30	

3.1.8	 Accessibility Testing 31	

3.2	 Additional Test Levels applicable for Mobile Applications 31	

3.2.1	 Field Testing 31	

3.2.2	 Testing for Application Store Approval and Post-release Testing 31	

3.3	 Experience-based Testing Techniques 31	

3.3.1	 Personas and Mnemonics 31	

3.3.2	 Heuristics 32	

3.3.3	 Tours 32	

3.3.4	 Session-Based Test Management (SBTM) 34	

3.4	 Mobile Test Process and Approaches 34	

3.4.1	 Test Process 34	

3.4.2	 Test Approaches 35	

4. Mobile Application Platforms, Tools and Environment – 80 mins 36	

4.1	 Development Platforms for Mobile Applications 36	

4.2	 Common Development Platform Tools 36	

4.3	 Emulators & Simulators 37	

4.3.1	 Overview of Emulators & Simulators 37	

4.3.2	 Using Emulators and Simulators 37	

4.4	 Setting up a Test Lab 38	

5. Automating the Test Execution – 55 mins 39	

5.1	 Automation Approaches 39	

5.2	 Automation Methods 40	

5.3	 Automation Tools Evaluation 40	

5.4	 Approaches for setting up an Automation Test Lab 41	

6. References 42	



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 6 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

6.1	 ISTQB® Documents 42	

6.2	 Referenced Books 42	

6.3	 Further Books and Articles 42	

6.4	 Links (Web/Internet) 43	

7. Appendix A – Learning Objectives/Cognitive Level of Knowledge 44	

7.1	 Level 1: Remember (K1) 44	

7.2	 Level 2: Understand (K2) 44	

7.3	 Level 3: Apply (K3) 44	

8. Appendix B – Glossary of Domain-Specific Terms 45	

9. Index 50	

 
  



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 7 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

 Acknowledgments 

This document was produced by a core team from the International Software Testing Qualifications 
Board Mobile Application Testing Working Group. 

Vipul Kocher (chair), Piotr Wicherski (vice-chair), José Díaz, Matthias Hamburg, Eran Kinsbruner, 
Björn Lemke, Samuel Ouko, Tal Pe’er, Ralf Pichler, Lloyd Roden, Nils Röttger, Angelina Samaroo, 
Yaron Tsubery 

The core team thanks the review team for their suggestions and input. 

The following persons participated in the reviewing, commenting or balloting of this syllabus: 

Graham Bath, Veronica Belcher, Armin Born, Geza Bujdoso, YongKang Chen, Wim Decoutere, Frans 
Dijkman, Florian Fieber, David Frei, Péter Földházi Jr., Chaonian Guo, Attila Gyuri, Ma Haixia, 
Matthias Hamburg, Zsolt Hargitai, Hongbiao Liu, Ine Lutterman, Marton Matyas, Petr Neugebauer, 
Ingvar Nordström, Francisca Cano Ortiz, Nishan Portoyan, Meile Posthuma, Emilie Potin-Suau, Liang 
Ren, Lloyd Roden, Chaobo Shang, Mike Smith, Péter Sótér, Marco Sogliani, Michael Stahl, Chris Van 
Bael, Paul Weymouth, Salinda Wickramasinghe, Minghui Xu 

This document was formally released by the ISTQB® on 3 May 2019.  
  



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 8 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

0. Introduction 

0.1 Purpose of this Document 

This syllabus forms the basis for the qualification of Mobile Application Testing at the Foundation 
Level. The ISTQB® provides this syllabus as follows: 

1. To National Boards, to translate into their local language and to accredit training providers. 
National Boards may adapt the syllabus to their particular language needs and modify the 
references to adapt to their local publications. 

2. To Exam Boards, to derive examination questions in their local language adapted to the 
learning objectives for each syllabus. 

3. To training providers, to produce courseware and determine appropriate teaching methods. 

4. To certification candidates, to prepare for the exam (as part of a training course or 
independently). 

5. To the international software and systems engineering community, to advance the profession 
of software and systems testing, and as a basis for books and articles. 

The ISTQB® may allow other entities to use this syllabus for other purposes, provided they seek and 
obtain prior written permission. 

0.2 The Certified Foundation Level Mobile Application Testing 

The Foundation Level qualification is aimed at anyone involved in software testing who wishes to 
broaden their knowledge of Mobile Application Testing or anyone who wishes to start a specialist 
career in Mobile Application Testing.  

Information about Mobile Application Testing described in the ISTQB® Certified Tester Foundation 
Level syllabus [ISTQB_CTFL_2018] has been considered in creating this syllabus.  

0.3 Business Outcomes 

This section lists the business outcomes expected of a candidate who has achieved the Foundation 
Level Mobile Application Testing certification. 

MAT-01 Understand and review business and technology drivers for mobile apps in order to create 
a test strategy. 

MAT-02 Identify and understand the key challenges, risks and expectations associated with testing 
a mobile application. 

MAT-03 Apply test types and levels specific to mobile applications. 

MAT-04 Apply common test types, such as those mentioned in [ISTQB_CTFL_2018], in the mobile 
specific context. 

MAT-05 Carry out the activities required specifically for mobile application testing as part of the 
main activities described in the ISTQB® test process. 

MAT-06 Identify and use suitable environments and appropriate tools for mobile application testing. 

MAT-07 Understand methods and tools used specifically to support mobile application test 
automation. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 9 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

0.4 Examinable Learning Objectives 

These learning objectives support the business outcomes and are used to create the examination 
which must be passed to achieve the Foundation Level Mobile Application Testing Certification. 
Learning objectives are allocated to a cognitive level of knowledge (K-Level). 

A K-level, or cognitive level, is used to classify learning objectives according to the revised taxonomy 
from Bloom [Anderson 2001]. ISTQB® uses this taxonomy to design examinations against its syllabi. 

This syllabus considers three different K-levels (K1 to K3). For more information see chapter 7. 

0.5 Hands-on Levels of Competency 

Mobile Application Testing Foundation Level introduces the concept of Hands-On Objectives  which 
focus on practical skills and competencies.  

Competencies can be achieved by performing hands-on exercises, such as those shown in the 
following non-exhaustive list: 

● Exercises for K3 level learning objectives performed using paper and pen or word processing 
software, as is done for various existing ISTQB® syllabi. 

● Setting up and using test environments. 

● Testing applications on virtual and physical devices. 

● Using tools on desktops and/or mobile devices to test or assist in testing related tasks such as 
installation, querying, logging, monitoring, taking screenshots etc. 

The following levels apply to hands-on objectives: 

● H0: This can include a live demo of an exercise or recorded video. Since this is not performed 
by the trainee, it is not strictly an exercise. 

● H1: Guided exercise. The trainees follow a sequence of steps performed by the trainer. 

● H2: Exercise with hints. The trainee is given an exercise with relevant hints to enable the 
exercise to be solved within the given timeframe. 

● H3: Unguided exercises without hints. 

Recommendations: 

● K1 learning objectives typically use H0 level and H1 or H2 when the situation demands. 

● K2 learning objectives typically use H1 or H2 levels and H0 or H3 when the situation 
demands.  

K3 learning objectives typically use H2 or H3 levels, although it is not always necessary to have a 
hands-on exercise for a K3 learning objective. If the setup is complex or if it will be too time 
consuming, then use H0 level. 

0.6 The Examination 

The Mobile Application Testing Foundation Level Certificate exam will be based on this syllabus. 
Answers to exam questions may require knowledge based on more than one section of this syllabus. 
All sections of the syllabus are examinable, except for the introduction and appendices. Standards, 
books, and other ISTQB® syllabi are included as references, but their content is not examinable, 
beyond what is summarized in this syllabus itself. 

The Mobile Application Testing Foundation Level exam is multiple choice. There are 40 questions. To 
pass the exam, at least 65% of the questions (i.e., 26 questions) must be answered correctly. Hands-
on objectives and exercises will not be examined. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 10 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Exams may be taken as part of an accredited training course or taken independently (e.g., at an exam 
center or in a public exam). Completion of an accredited training course is not a prerequisite for the 
exam. 

Somebody who wants to appear for the exam without getting trained from an accredited training 
provider should read the competence guidelines as provided in the Accreditation and Competence 
Guidelines document [CTFL-MAT-2019-Accreditation-and-Competence-Guidelines.pdf] and try to 
conduct these hands-on exercises themselves. This will help them gain the competencies that an 
accredited training provider would be expected to impart. Please note that this has no bearing on the 
Mobile Application Testing Foundation Level certification examination as the exam is only based on 
this syllabus and its learning objectives. 

0.7 Recommended Training Times 

A minimum training time has been defined for each learning objective in this syllabus. The total time 
for each chapter is indicated in the chapter heading. 

Training providers should note that other ISTQB® syllabi apply a “standard time” approach which 
allocates fixed times according to the K-Level. The Mobile Application Testing syllabus does not 
strictly apply this scheme. As a result, training providers are given a more flexible and realistic 
indication of minimum training times for each learning objective. 

0.8 Entry Requirements 

The ISTQB® Foundation Level certificate must be obtained before taking this exam. 

0.9 Sources of Information 

Terms used in the syllabus are defined in the ISTQB®’s Glossary of Terms used in Software Testing 
[ISTQB_GLOSSARY].  

Chapter 6 contains a list of recommended books and articles on Mobile Application Testing. 
  



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 11 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

1. Mobile World - Business and Technology Drivers 
- 175 mins 

Keywords 

risk analysis, risk mitigation, risk-based testing, test strategy 
 

Learning Objectives for Business and Technology Drivers 
 

1.1 Mobile Analytics Data 
MAT-1.1.1     (K2) Describe how available mobile analytics data can be used as input for the test 

strategy and the test plan. 
HO-1.1.1       (H3) Based on data collected from one or more analytics data sources (geographical 

location, platform, operating system version and device type distribution), select the 
device types to be tested and their corresponding prioritization. 

Note: HO-1.1.1 and HO-1.7.1 (below) may be combined. 
 
1.2 Business Models for Mobile App 
MAT-1.2.1     (K2) Distinguish between various business models for mobile applications. 
 
1.3 Mobile Device Types 
MAT-1.3.1     (K1) Recall different types of mobile devices. 
 
1.4 Types of Mobile Applications 
MAT-1.4.1     (K2) Distinguish between different types of mobile applications. 
 
1.5 Mobile Application Architecture 
MAT-1.5.1     (K2) Distinguish between general architecture types of mobile applications. 
 
1.6 Test Strategy for Mobile Apps 
MAT-1.6.1     (K3) Apply characteristics and specifics of the mobile market in preparing a test 

strategy. 
 

1.7 Challenges of Mobile Application Testing 
MAT-1.7.1     (K2) Give examples of the challenges associated with testing mobile applications. 
HO-1.7.1       (H1) Gather market data such as device or operating system market share for a 

selected region. Gather data for screen sizes and density. Create a list of five devices 
and calculate the expected market coverage for this list. 

Note: HO-1.1.1 (see earlier) and HO-1.7.1 may be combined. 
 
1.8 Risks in Mobile Application Testing 
MAT-1.8.1     (K2) Describe how risks specific to mobile applications may be mitigated. 

 

1.1 Mobile Analytics Data 

There are many stakeholders in the mobile world including manufacturers, platform providers, 
operating system (OS) providers, market data providers, tool providers and, of course, application 
developers and testers. 

In order to contribute effectively to test planning discussions and test analysis, a mobile application 
tester should be aware of and familiar with the following factors: 

● The business implications of the distribution of platforms 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 12 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

● Application downloads per platform 

● The quantity and distribution of OS versions 

● The market distribution of various device types, including variations based on geographical 
location 

● Differing screen sizes and resolutions 

● The various input methods 

● Camera types 

There are several sources of information for the above, both free and commercial-based. These 
include StatCounter GlobalStats [URL1], the OS vendors themselves and other third-party sources. 

The mobile analytics data is used to select a device portfolio for test execution that is appropriate for 
the target market. Tests are run over this portfolio to test the app on a device in accordance with the 
importance of the device. The data related to devices and their special features, if any, may also be 
used to design tests specific to a device type. For example, a device with heart beat sensor may need 
special test cases. 

1.2 Business Models for Mobile Apps 

There are several models which can be used to monetize the work done in creating mobile 
applications. These include but are not limited to: Freemium, advertisement-based, transaction-based, 
fee-based, and enterprise applications. In addition, in-app purchases can be applied to some of these 
models.  

There are certain advantages and disadvantages for each of these approaches and the tester should 
keep the business model in mind whilst testing the mobile application. 

In a Freemium model the applications are generally free but users have to pay if the need additional 
features. The applications need to provide sufficient features to be attractive to the users, whilst at the 
same time providing advanced features for which a large number of users would be willing to pay. 

Advertisement-based applications display advertisements on the screen as users interact with the 
applications. This strategy for revenue generation is more effective if the applications are used for 
relatively long periods of time. The user interface designers must take care when displaying the 
advertisements. They must be prominent enough without hiding essential parts of the application and 
they must ensure that users are not distracted and dislike using the application. 

Transaction-based applications charge the users either per transaction, a flat fee or a percentage of 
the transaction value or similar. This type of business model is suitable for a limited number of 
applications only and is usually applied for business and financial apps such as mobile wallets. 

Fee-based applications require the users to pay for downloading and installing the application. 
Deciding on a fee-based business model should be well-considered since large numbers of free or 
freemium options exist for most application types. The probability of users buying such an app 
increases if it provides outstanding features or usability, or when competing applications are not 
available. 

Free and enterprise applications do not charge their users. Enterprise applications are developed for 
internal use within the organization and provide an interface to the services provided. There are many 
such apps available from organizations such as banks or e-commerce companies. These apps are not 
generally focused on monetizing the app itself but allow revenue to be generated by directing users to 
the services provided by the organizations. 

1.3 Mobile Device Types 

There is a variety of mobile devices available that support different types of applications. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 13 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Typical devices include: 

● Basic phones 

● Feature phones 

● Smartphones 

● Tablets 

● Companion devices - including wearables and some IoT (Internet of Things) devices. 

When testing it should be kept in mind that each type of device has specific features for particular 
needs. 

Basic phones are used for telephone and SMS only and provide very few built-in apps and games. 
The installation of apps or browsing is not possible. 

Feature phones provide limited support for apps and app installation. They provide internet access via 
a built-in browser and may have some additional hardware such as cameras. 

Smartphones provide phones with several sensors. The operating system supports features such as 
application installation, multimedia support and browsing. 

Tablets are similar to smartphones but are physically larger. They are typically used when a larger 
display is needed or desired and they may also support longer battery life. 

Companion devices and some IoT appliances are computer-powered devices commonly used 
together with a smartphone or tablet to extend the available functionality or to give access to the data 
on the phone or tablet in a more convenient way. 

Wearables are devices that can be worn by consumers. These can act as a companion to existing 
devices or function independently. Watches and fitness bands are examples of popular wearables. 

1.4 Types of Mobile Applications 

There are three main types of mobile application:  

● Native 

● Browser-based 

● Hybrid 

Each type of application has certain advantages and disadvantages, requiring a business decision to 
be made before starting the application development. 

Native applications are developed using platform specific software development kits (SDKs), 
development tools and platform specific sensors and features. They are downloaded, installed and 
updated from supplier stores. These apps may need testing on all supported devices. 

Native applications generally provide better performance, can fully utilize platform features and comply 
to the expectations for the platform they are developed for. The development cost is typically higher 
and additional challenges may apply such as the use of multiple platforms and the installation and 
testing on a large number of devices. 

Browser-based applications are accessed through a mobile browser. Since these use the typical web-
development technologies and browsers, multiple platform support is easy, and the development cost 
is usually lower. 

There are four main ways in which mobile web applications are created: 

● Mobile specific versions of websites and applications (these are also known as m(dot) sites). 
Usually this means that when a mobile browser addresses the application, a mobile version of 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 14 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

the application is provided. For example, facebook.com redirects to m.facebook.com when 
accessed from a mobile device. 

● Responsive web apps ensure that the design adjusts to the form factor and screen size, 
usually expressed as view ports. 

● Adaptive web apps adjust the design according to some predefined sizes. There are different 
designs for these sizes and the features available to the user are often adjustable. 

● Progressive web apps allow shortcuts of specific web pages to be created on the mobile 
home screen. They appear like native apps and sometimes even can work offline. 

Mobile web apps are created using common web technologies, which generally makes them easier to 
develop and manage compared to native and hybrid apps. They may however not be as feature-rich 
as native or hybrid apps and may have limited access to the platform’s native Application 
Programming Interfaces (APIs). The access to mobile sensors is also limited. Installability testing on 
devices is not needed, but browser compatibility testing is required. 

Hybrid applications are a combination of native app and web app. They use a native app wrapper 
which contains a web view to run a web application inside of a native app. These apps are 
downloaded from supplier stores and can access all of the device features. They are relatively easy to 
develop, update and maintain without updating the app installed on the device. The skills required for 
developing these apps are almost the same as for web development. Possible weak points for these 
apps include performance issues due to the use of a wrapper and possible divergences from the 
expected look and feel because of platform-specific aspects. 

Native and hybrid apps are installed physically on a device and are therefore always available to the 
user, even when the device has no internet connection. In comparison, browser-based applications 
require internet access. 

Some applications are pre-installed on the mobile device and others can be installed via various 
distribution channels, such as Apple App Store, Google Play Store, enterprise app stores (available 
only inside the enterprise network) and third-party app markets. 

Testing of each of these application types may require a different approach. The parameters to 
consider include: 

● Different types of devices to be supported 

● Sensor and device features to be used 

● Availability under various network conditions 

● Installability, compatibility, performance efficiency, and usability 

1.5 Mobile Application Architecture 

There are multiple solutions to designing a mobile application. 

Some of the considerations in choosing a particular architecture or design decision include: 

● Target audience 

● Type of application 

● Support of various mobile and non-mobile platforms 

● Connectivity needs 

● Data storage needs 

● Connections to other devices including IoT appliances 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 15 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Architectural decisions include: 

● Client-side architecture such as thin or fat client 

● Server-side architecture such as single or multi-tier 

● Connection type such as Wi-Fi, cellular data, Near Field Communication (NFC), Bluetooth 

● Data synchronization methods such as store-and-forward, push and pull, synchronous 

and asynchronous communications 

Thin client apps do not contain application code which is customized to the device and make minimal 
use of mobile operating system features. These apps typically use the web browser as the front-end 
and JavaScript as the language for implementing client-side logic. 

Thick/fat client applications may have multiple layers of application code and may use mobile 
operating system features. These are typically Native or Hybrid applications. 

The server-side architectures include the following possibilities: 

● Single-tier architectures are monolithic and have all servers on the same machine. They 

are less scalable and harder to secure. 

● Multi-tier architectures spread server-side components across various units. Two-tier 

architectures involve separate web and database servers, whereas three-tier architectures 

also include an application server. Multi-tier architectures allow separation of 

responsibilities, provide database specialization and provide better flexibility, scalability 

and security. However, they may be significantly more expensive to develop, manage and 

host compared to single-tier architectures.  

There are various connection methods. A mobile device might be connected to the server via 
connection types such as Wi-Fi or via cellular data connections such as 2G, 3G, 4G, and 5G. Mobile 
applications typically operate in one of the following three modes: 

● Never-connected apps work offline and don’t need to be connected. A simple calculator is 

an example of such an app. 

● Always-connected apps require a permanent network connection during operation. All 

mobile web applications fall into this category, although some can operate in a limited way 

when partially connected. 

● Partially-connected apps require a connection for tasks such as data transfer but can 

operate for long periods of time without connection. 

The synchronization of data between the client and the server can be conducted in the following 
modes: 

● Continuous mode is where the data gets transferred as soon as it is submitted. 

● Store-and-forward mode is where the data may be stored locally before being transferred, 

especially when no connectivity is available. 

The data transfer can be performed in the following two approaches: 

● Synchronous data transfer is performed when the calling function waits for the called 

function to complete before returning. 

● Asynchronous data transfer is performed when the called server function returns 

immediately, processes the data in the background and calls back the calling client 

function once it completes the task. This give users more control. However, implementing 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 16 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

the handshake mechanism increases complexity concerning the availability of the client or 

the network when the server initiates the callback. 

1.6 Test Strategy for Mobile Apps 

Creating a test strategy for mobile devices requires the tester to take into account all the parameters 
listed so far in this chapter. In addition, the risks discussed in this section and the challenges 
described in section 1.7 must also be considered. 

Typical risks are, for example: 

● Without knowing the device proliferation data in a particular geographic location, one 

cannot choose the devices on which the app needs to be tested in a sustainable fashion. 

● Without knowing the type of business model, one cannot test whether the application 

behavior is a good fit for that business model. 

Creating a test strategy for mobile application testing additionally needs to consider the following 
specific risks and challenges: 

● The variety of mobile devices with device-specific defects on some of them. 

● The availability of devices in-house or via the use of external test labs. 

● The introduction of new technologies, devices and/or platforms during the application life 

cycle. 

● The installation and upgrade of the app itself via various channels, including preserving 

app data and preferences. 

● Platform issues which might impact the application. 

● Network coverage and its impact on the app in a global context. 

● The ability to test using the networks of various service providers. 

● The use of mobile emulators, simulators and/or real devices for specific test levels and 

types of test. 

These challenges are described in greater detail in the section 1.7. 

The test strategy takes risks and challenges into account. For example: 

● The test strategy may specify the use of mobile emulators/simulators in the early stages of 

development, followed by real devices in later stages. There are certain types of tests that 

can be performed on the mobile emulators/simulators but not all types of tests. More on 

this is described in section 4.3. 

● The test strategy may consider the challenge posed by a large number of different devices 

by adopting one of the following approaches: 

o Single platform approach: Reduce scope to a single type of device, one OS 

version, one carrier and one network type. 

o Multi-platform approach: Reduce scope to a representative selection of devices 

and OS used by a majority of customers in the target market, based on mobile 

traffic or other analytical data. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 17 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

o Maximum coverage approach: Cover all OS versions, devices, manufacturers, 

carriers and network types. This is basically exhaustive testing, which is usually 

not economically viable, especially when considering the multitude of devices and 

OS versions on the market. 

● The test strategy may consider the challenge posed by the non-availability of devices, 

networks or real-life conditions by using external resources, such as: 

o Remote device access services. This is a way to access devices over the web 

which are not otherwise owned.  

o Crowd testing services. This is as a way to access a huge group of volunteers 

and their devices. 

o Personal networks such as friends and colleagues. This makes use of one’s own 

private social network. 

o Bug hunting. This is gamified testing event using volunteers from the company or 

from the general public. 

In addition to the test levels described in [ISTQB_CTFL_2018] the test strategy also considers the 
common types of testing used for mobile applications (see section 3.1) and any additional levels of 
testing required (see section 3.2). 

1.7 Challenges of Mobile Application Testing 

In the mobile world many additional challenges exist that are uncommon or uncritical in desktop or 
server software. Testers must be aware of these challenges and how they might impact the success of 
the application. 

Typical challenges in the mobile world include: 

● Multiple platforms and device fragmentation: Multiple OS types and versions, screen sizes 

and quality of display. 

● Hardware differences in various devices: Various types of sensors and difficulty in 

simulating test conditions for constrained CPU and RAM resources. 

● Variety of software development tools required by the platforms. 

● Difference of user interface designs and user experience (UX) expectations from the 

platforms. 

● Multiple network types and providers. 

● Resource-starved devices. 

● Various distribution channels for apps. 

● Diverse users and user groups. 

● Various app types with various connection methods. 

● High feedback visibility resulting from bugs that have a high impact on users which may 

easily result in them publishing feedback on online market places. 

● Market place publishing which requires additional approval cycles for publishing by market 

place owners such as Google Play or Apple App Store. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 18 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

● Unavailability of newly launched devices requiring the use of mobile emulators/simulators 

 

The impact of these challenges includes: 

● Large numbers of combinations to be tested. 

● Large numbers of devices required for testing, which drives up the cost. 

● The need for backward compatibility to run the application on older versions of the 

platform. 

● New features being released in every version of underlying operating system. 

● Guidelines to be considered for the various platforms. 

● Resource-starved CPUs as well as limited amount of memory and storage space. 

● Varying bandwidth and jitter of various networks. 

● Changes in the available upload and download speeds based on data plans. 

 

The following two examples illustrate typical challenges and their potential impact: 

● Different devices have different types of sensors and tests need to account for these. 

Every new sensor added to the hardware may require additional backward compatibility 

testing. 

● Some of the network challenges can be dealt with appropriately, even under varying 

network conditions, by using appropriate caching and prefetching strategies. However, 

this comes at a cost; a large number of open connections can impact the server-side 

performance as most apps keep the user logged-in on the server. 

1.8 Risks in Mobile Application Testing 

The challenges mentioned in section 1.7 can appear in isolation or in combination with others. This 
may result in additional risks for a mobile application. 

A tester must be able to contribute to the product risk analysis. Common risk analysis and mitigation 
methods, as discussed in [ISTQB_CTFL_2018], chapter 5.5, can also be applied in the mobile 
context. In addition, the following mobile-specific risks and mitigation strategies exist: 

 

Risk Possible mitigation  

Market fragmentation Choose an appropriate selection of devices for test 
execution, e.g., testing the most commonly used devices. 

Cost of supporting multiple platforms Perform analysis to understand most used platforms, thus 
avoiding testing of those no longer in scope. 

Introduction of new technologies, 
platforms and devices 

Use pre-production versions of those technologies. 

Lack of availability of devices for test 
execution 

Apply remote device access services or crowd testing 
services. 

Risks from the expected usage 
patterns of mobile applications used 
while on the go 

Applying appropriate testing approaches such as field 
testing 
 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 19 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

2. Mobile Application Test Types – 265 mins  
 

Keywords 

co-existence, compatibility, connectivity, cross-browser compatibility, interoperability, system under 
test (SUT), test type, usability 
 

Learning Objectives for Mobile Applications Test Types 
 

2.1 Testing for Compatibility with Device Hardware 
MAT-2.1.1 (K2) Describe device-specific features and hardware which should be considered for 

testing. 
HO-2.1.1 (H1) Test an app for several mobile device functionalities while the system under test 

(SUT) is in use to verify correct functioning of the SUT. 
MAT-2.1.2 (K3) Prepare tests for the app's compatibility with screen sizes, aspect ratio, and 

screen density. 
HO-2.1.2 (H3) Test an app on several mobile devices (virtual or physical) to show the impact of 

the resolution and screen size on the app’s user interface.  
MAT-2.1.3 (K2) Describe how tests can show the potential effects of device overheating on the 

system under test. 
MAT-2.1.4 (K1) Recall different test types for testing of the various input sensors used in mobile 

devices. 
MAT-2.1.5 (K1) Recall tests to be run for various input methods. 
HO-2.1.5 (H0) Test an app for various types of inputs including keyboard-related tests with 

multiple installed keyboards, gesture-related tests and (optionally) camera-related 
tests. 

MAT-2.1.6 (K2) Describe how tests can reveal user interface issues when changing screen 
orientation. 

HO-2.1.6 (H3) Test an application to check the effect of orientation change on the functionality 
of the app, including data retention and correctness of the user interface. 

MAT-2.1.7 (K3) Prepare tests for an app using typical mobile device interrupts. 
HO-2.1.7 (H3) Test an app for several mobile device interrupts while the application is in use. 
MAT-2.1.8 (K3) Prepare tests for changing the access permissions to the device features 

requested by the app. 
HO-2.1.8 (H3) Test an app’s permissions management by permitting and denying requested 

permissions and observing behavior when folders and sensor settings are denied at 
installation or changed after installation. 

MAT-2.1.9 (K3) Prepare tests to verify the impact of an app on a device’s power consumption 
and the impact of its power state on the app. 

HO-2.1.9 (H3) Test an app under varying battery power levels to discover consumption data 
and establish performance under low and dead battery states. 

 
2.2 Testing for App Interactions with Device Software 
MAT-2.2.1 (K3) Prepare tests for the handling of notifications by the system under test. 
HO-2.2.1 (H2) Test the effect of receiving notifications when an app is in the foreground and the 

background. Test the effect of changing notification settings on the app’s functionality. 
MAT-2.2.2 (K2) Describe how tests can verify correct functionality of quick-access links.  
HO-2.2.2 (H3) Test an app for shortcut/quick-access functionality. 
MAT-2.2.3 (K3) Prepare tests for the impact on an app of the user preference settings provided 

by an operating system. 
HO-2.2.3 (H3) Test a running app by changing the input value options for the preferences 

provided by the operating system. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 20 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

MAT-2.2.4 (K2) Distinguish between different tests required for native, web and hybrid 
applications. 

HO-2.2.4 (H0) (Optional) Identify the tests needed for apps, depending on the app type. 
MAT-2.2.5 (K1) Recall tests required for apps which are available on multiple platforms or 

operating system versions. 
MAT-2.2.6  (K1) Recall tests required for co-existence and interoperability with other apps. 
 
2.3 Testing for Various Connectivity Methods 
MAT-2.3.1 (K2) Summarize the tests for connectivity testing, including those across networks, 

when using Bluetooth and when switching to flight mode. 
HO-2.3.1 (H0) (Optional) Conduct tests on an application which is transferring data to the server 

when the phone switches between Wi-Fi and cell-data connectivity based on their 
available signal strengths. 

2.1 Testing for Compatibility with Device Hardware 

2.1.1 Testing for Device Features 

Different types of devices with differing capabilities mean that compatibility testing has to be 
conducted on a large number of devices. This requires prioritization of target devices for testing. For 
prioritization market data, as discussed in section 1.1, is used to select a device portfolio most 
appropriate for the target market. The device portfolio selection usually is a compromise between 
market coverage, cost and risk.  

Applications can be installed on different types of devices with the following features: 

● Different methods for switching off 

● Different ways to navigate 

● Use of hard and soft keyboards 

● Various hardware features such as:  

o Radio 

o USB 

o Bluetooth 

o Cameras 

o Speakers 

o Microphone 

o Headphone access  

None of these features should interfere negatively with the application’s operations.  

Device features have many variations and can differ even between different device models made by 
the same manufacturer. They are commonly used to differentiate between market segments and can 
change quickly over time. For example, it is currently quite common for devices in the high-end and 
mid-range to have fingerprint sensors, while devices in the low-end do not. This changes over time. A 
few years ago, fingerprint sensors were not included in any mobile device at all.  Due to this 
changeability, the tester needs a clear understanding of the devices and the features expected by its 
users. The tester needs to create the device portfolio and design corresponding tests accordingly. 

Generally, it is not enough to test if the application works correctly with the expected features. In 
addition, it is required to test that the app still works as expected if a certain feature is absent. For 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 21 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

example, an app that supports the usage of front and rear camera should not crash if it is installed and 
executed on a device having multiple cameras, only one camera or no camera at all. 

2.1.2 Testing for Different Displays 

Device displays can have various screen sizes, viewport sizes, aspect ratios and resolutions 
measured in pixels per inch (ppi) and dots per inch (dpi). Device fragmentation requires prioritization 
to be performed. Tests should be created that exercise the user interface on various devices with 
different screen sizes, resolutions and aspect ratios most common in the target market. 

Testing for different displays needs to be carried out to check the following: 

● The app scales all user interface elements according to current screen density and size.  

● User interface elements do not overlap. 

● Usability or touch issues do not occur. 

● There is no problematic shrinkage of images because of high dpi/ppi. 

2.1.3 Testing for Device Temperature 

Unlike desktop computers, mobile devices react differently to increases in device temperature. 

Mobile devices could get overheated for a variety of reasons such as battery charging, intense 
workload, apps running in the background, continuous usage of cellular data, Wi-Fi or GPS.  

Overheating can impact a device as it attempts to reduce heating and conserve battery levels. This 
may include a drop in the CPU frequency, the freeing up of memory, and the turning off parts of the 
system. 

If this happens it can also impact the app functionality and therefore must be considered when 
planning testing. Tests must be designed to consume a lot of energy which leads to the generation of 
heat over a long uninterrupted period of time. The software under test must then show no unexpected 
behavior.  

2.1.4 Testing for Device Input Sensors 

Mobile devices receive a variety of inputs types from sensors which use, for example, GPS, 
accelerometers, gyroscopes, and 3-axis magnetometers or which react to pressure, temperature, 
humidity, heartbeat, light or touchless inputs. 

Testing for different device input sensors checks the following: 

● The app works as intended for each of the sensors available. For example, the app needs to 

be tested for various types of motion such as circular motion and back and forth motion (as in 

walking).  

● Features that react to external lighting react correctly under various lighting conditions.  

● Sound inputs and outputs respond correctly in conjunction with soft and hard volume buttons, 

microphones, wired and wireless speakers, and in various ambient sound conditions. 

● Location position is accurate under the following conditions: 

o Switching GPS on and off. 

o Different GPS signal quality. 

o Where the app needs a fall back to various other methods of location determination, 

including Wi-Fi, cell tower location or manual location entry. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 22 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

2.1.5 Testing Various Input Methods 

Testing for different device input methods checks the following: 

● Given that mobile phones allow for a variety of soft keyboards to be installed, the app is able 

to work with at least those provided by major device manufacturers and those which are 

widely used. 

● The app ensures that the keyboard pops up by default with appropriate layout and keys when 

required.  

● When a user places one or more fingers on the touch screen, the application interprets that 

pattern as a particular gesture or command. Typical gestures include press/touch, double 

touch, multi-touch, swipe, tap, double tap, drag, and pinch open/close. 

● Each screen of the app needs responds correctly to the gestures or other means of input as 

appropriate for that screen and ignores all non-supported gestures or inputs.  

● Cameras used by apps are able to capture images and videos, scan barcodes, QR codes and 

documents, and measure distances.  

● Where front and back cameras are available, the appropriate camera is turned on by default. 

For example, where a video chat requires the front camera to be switched on by default, apps 

need to be tested in cases where the app uses the camera input and where it does not. 

Additionally, tests must ensure the software under test works correctly if only one (front or 

rear) camera is present instead of two. This is especially true if the software under test uses 

one particular camera and it is this one that is missing. 

2.1.6 Testing for Screen Orientation Change  

Motions sensors are used to detect changes in orientation and trigger a switch between landscape 
and portrait modes (and vice versa) with layout changes made in the user interface as necessary.  

Tests after a change of screen orientation check the following: 

● Correct usability and functional behavior when a switch to either portrait or landscape mode is 

performed. 

● The app maintains its state. 

● Input data fields retain already captured data. 

● Output data fields display the same data while maintaining the current session. 

Tests after a change of screen orientation change should not just focus on a single switch because 
rendering or state issues may not always show up after a single change. Tests should therefore be 
performed with several uninterrupted switches between portrait and landscape modes. 

Tests that switches orientation several times in the various states of a user interface, with and without 
data, should be designed. The app should behave as expected, persisting the state without any loss 
or change of data. 

2.1.7 Testing for Typical Interrupts 

Common types of device interrupts include voice calls, messages, charger switched on, low memory 
and other notifications. User-initiated interrupts result from actions such as app switching or setting the 
device into standby while the app is running 

Tests for interrupts check the following: 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 23 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

● The app handles the all of the interrupts mentioned above correctly without negative impact 

on app behavior. 

● The app continues to function correctly, preserving its state, data and sessions regardless of 

which interrupt occurs. 

● Where the device has a blocking “do-not-disturb” mode which suppresses notifications, the 

app must ensure that the various conditions are used correctly. These tests must also be 

performed when the “do-not-disturb” mode is turned off after having been active for a long 

period of time. This results in many notifications being received at once.  

● Test should be designed for receiving interrupts during app usage to make sure that the 

interrupts do not have a negative impact. For example, answering a phone call while using the 

app and the user being returned to the state where he was at the time of the interrupt.  

2.1.8 Testing for Access Permissions to Device Features 

Apps need access to various folders such as contacts and pictures and to sensors such as camera 
and microphone. When access is denied at installation or changed after installation it might impact the 
app behavior.  

Tests for access permissions check the following: 

• The app is able to work with reduced permissions; it asks the user to grant these permissions 
and does not fail in an unexplained manner.  

• Permissions are only requested for the resources which are relevant to the app’s functionality; 
no broad permissions for unrelated resources are allowed. 

• The app functionality responds correctly if a permission is withdrawn or rejected during 
installation.  

• Any request for permission issued by the app is correct and justified. 

To test for access permissions a tester needs to know why the app needs each permission and how 
functionality should be impacted if the permission is withdrawn or rejected during installation. Test 
should be designed for rejecting permissions during installation as well as granting permissions after 
installation. 

2.1.9 Testing for Power Consumption and State 

Tests for power consumption and state check the following: 

• Battery power state and drainage-related defects. 

• Data integrity under low power and dead battery conditions.  

• Power consumption while the app is active and is under heavy and low use.  

• Power consumption while the app is in the background.  

These tests need to be planned carefully as these need to be run uninterrupted over an extended 
period of time. For example, the device may need to be left unattended with the app in the 
background or foreground but the device is not used. Tools such as log analyzers are needed to 
extract information about battery drain patterns. 

2.2 Testing for App Interactions with Device Software 

2.2.1 Testing for Notifications 

There are various mechanisms used by the operating system to display notifications. Sometimes the 
operating system will either delay the display of the notifications or fail to display them at all in a bid to 
optimize power consumption. The following test conditions must be considered: 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 24 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

• The correct handling of notifications received when the app is in the foreground or 
background, especially under low battery conditions.  

• If notifications allow direct interaction with the app content, (i.e., without opening the app 
itself), the user interaction must be provided by the app at a later time. If, for example, the 
user responds to a notification, then it must be possible to access that response from within 
the app at a later time.  

• If notifications allow access to the app then the corresponding page of the app must be 
opened instead of the home screen when the notification contains a deep link to that page.  

2.2.2 Testing for Quick-access Links 

Quick-access links such as app shortcuts in Android and Force-touch or 3d-touch for iOS may be 
provided by the software under test. These features perform a subset of the application functionality 
from the home screen without actually launching the entire app.  

The following test conditions must be considered: 

• Where some of the features are only available on a particular version of the operating system, 
the system under test must behave correctly if it is installed on versions of the operating 
system which either offer or do not offer such features.  

• The actions performed in quick-access links are reflected correctly in the app when opened. 

2.2.3 Testing for User Preferences Provided by the Operating System 

Any preferences (settings) provided to users by the operating system must be tested. It creates a 
negative experience for users if a certain preference setting is not respected by the app. For example, 
if the device is set to mute, the app should not play sounds. 

The following test conditions must be considered: 

• Users can amend typical preference options such as sound, brightness, network, power save 
mode, date and time, time zone, languages, access type and notifications.  

• The apps adhere to the set preferences by behaving accordingly.  

2.2.4 Testing for Different Types of Apps 

Specific tests may be performed depending on type of mobile app (see section 1.4). The following test 
conditions must be considered: 

● For native apps: 

o Device compatibility  

o Utilization of device features 

● For hybrid apps: 

o Interaction of the app with the device native features 

o Potential performance issues due to the abstraction layer 

o Usability (look and feel) compared to native apps on the platform in question 

● For web apps: 

o Testing to determine cross-browser compatibility of the app to various common 
mobile browsers 

o Functionality is not impacted due to various JavaScript engines 

o Utilization of OS features (e.g., date picker and opening appropriate keyboard) 

o Usability (look and feel) compared to native apps on the platform in question 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 25 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

2.2.5 Testing for Interoperability with Multiple Platforms and Operating System Versions 

Software companies often support apps on multiple operating systems. Each mobile operating system 
has its own limitations which need to be taken into account when testing apps. Testers must be aware 
of the specifics of each platform tested to ensure the app works as intended whilst still conforming to 
the look and feel of the platform. 

The following test conditions must be considered: 

● Handling of interrupts, notifications and optimizations (e.g., for energy saving). 

● Correct functionality where multi-platform applications share some code or have been created 
using cross-platform development frameworks. Note that if the applications do not share code, 
then it is like testing two different applications and everything needs to be tested.  

● Testing for backward compatibility if a platform uses different operating system versions.  

● Testing new or changed features made to platforms. For example, in Android the introduction 
of the Doze framework required testing on the various versions of the operating system which 
support this framework and those that don't. 

2.2.6 Testing for Interoperability and Co-existence with other Apps on the Device 

It is quite common for apps to interact with each other when installed on a device. Typical examples 
are the contact and email apps.  

The following test conditions must be considered:  

● Data transfer between the system under test and the utilized app is correct.  

● There is no harm done to any user data stored within a utilized app. 

● Conflicting behaviors. For example, an app might turn off GPS to save energy, while another 
app turns on GPS automatically.  

With millions of apps in the market, co-existence cannot realistically be tested for all of them. 
Nevertheless, such potential issues should be considered and tested according to their risk. 

2.3 Testing for Various Connectivity Methods 

Mobile devices can use various methods to connect to networks (see section 1.5). These include 
cellular networks such as 2G, 3G, 4G and 5G, as well as Wi-Fi and other wireless connection types 
such as NFC or Bluetooth.  
 
The following alternatives should be considered when performing tests for connectivity: 

● Device emulators/simulators can simulate various network connections and some remote 
device access service providers include them within their features. Emulators/simulators are, 
however, of limited value.  

● Setting up your own mobile network to support various connection types and then applying 
bandwidth manipulation. This is a very costly alternative.  

● Field testing is potentially more cost-effective alternative, but is limited with regard to the 
reproduction of tests. 

In real-world usage, connectivity methods differ. Users can be continuously connected using one 
particular mode, or they can switch between modes, such as from Wi-Fi to cellular (e.g., when a user 
leaves home while using the app). The user can switch between various Wi-Fi/cellular networks and 
versions, as well as between GSM cells. While on the move they may even hit dead spots with no 
network at all. Furthermore, the user can deliberately disconnect by, for example, switching to flight 
mode. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 26 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

 
Connectivity testing must ensure that the following test conditions are considered: 

● Correct app functionality with different connectivity modes.  

● Switching between modes does not cause any unexpected behavior or data loss.  

● Clear information is given to the user if functionality is restricted due to limited or no network 
connection or if bandwidth is low. The message should state the limitations and their reasons. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 27 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

3. Common Test Types and Test Process for Mobile 
Applications – 200 mins 

 

Keywords 

abnormal end, accessibility, code injection, exploratory testing, field testing, heuristic, installability, 
performance efficiency, performance testing, post-release testing, security testing, session-based test 
management, stress testing, test level, test process, test pyramid, tour, usability lab, usability testing 
  

Learning Objectives for Common Test Types and Test Process for Mobile Applications 
 
3.1 Common Test Types applicable for Mobile Applications 
MAT-3.1.1 (K3) Prepare installability tests for mobile apps. 
MAT-3.1.2 (K3) Prepare stress tests for mobile apps. 
MAT-3.1.3 (K2) Give examples of security issues related to mobile apps. 
MAT-3.1.4 (K1) Recall time and resource behavior considerations for mobile apps. 
MAT-3.1.5 (K3) Prepare usability tests for mobile apps. 
HO-3.1.5 (H2) Choose a tour, a mnemonic or a heuristic for usability testing an app using 

session-based test management.  
Note: HO-3.1.5 and HO-3.3.1, HO-3.3.2 and HO-3.3.3 may be combined. 

MAT-3.1.6 (K1) Recognize the type of tests required for database testing of mobile apps. 
MAT-3.1.7 (K2) Summarize the tests required for internationalization (globalization) and 

localization testing of mobile apps. 
MAT-3.1.8 (K2) Summarize the need for accessibility testing in mobile application testing. 

 
3.2 Additional Test Levels applicable for Mobile Applications 
MAT-3.2.1 (K2) Describe the additional test levels, such as field testing, and the associated extra 

activities required for effective mobile application testing. 
MAT-3.2.2 (K2) Describe the tests required for carrying out application store approval for 

publishing apps. 
 

3.3 Experience-based Testing Techniques 
MAT-3.3.1 (K1) Recall session-based test management, personas, and mnemonics in the 

context of exploratory mobile testing. 
HO-3.3.1  (H2) Choose a mnemonic (or part thereof) which is specific to mobile application 

testing for testing of an app using session-based test management.  
Note: HO-3.1.5 and HO-3.3.1, HO-3.3.2 and HO-3.3.3 can be performed together. 

MAT-3.3.2 (K2) Describe the usage of tours and heuristics as exploratory techniques for mobile 
application testing. 

HO-3.3.2  (H2) Choose a mobile specific heuristic to test mobile application.  
Note: HO-3.1.5 and HO-3.3.1, HO-3.3.2 and HO-3.3.3 can be combined. 

MAT-3.3.3 (K3) Make use of a mobile specific tour (such as the Feature tour) to test a mobile 
app. 
HO-3.3.3 (H2) Choose a mobile specific tour to test a mobile application.  

Note: HO-3.1.5 and HO-3.3.1, HO-3.3.2 and HO-3.3.3 can be combined. 
 

3.4 Mobile Test Process and Approaches 
MAT-3.4.1 (K2) Match the test process, as described in [ISTQB_CTFL_2018], to the needs of 

mobile application testing. 
MAT-3.4.2 (K2) Describe the approaches to testing at each test level, specific to mobile 

application testing. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 28 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

3.1 Common Test Types Applicable for Mobile Application 

3.1.1 Installability Testing 

Testers need to focus on installation, update and de-installation of the app using the following 
approaches: 

● Application stores 

The installation process may be different depending on the users of the app. The users could 
install the app from market place stores such as the Google Play Store or Apple’s App Store. 
The users of enterprise apps will be required to perform installation tests via a link, or a 
distribution service such as HockeyApp or App Center. 

● Sideloading (copying and installing app)  

Some operating systems provide the option of installing the application by copying it to a 
mobile device and installing it from the file. 

● Desktop applications  

Desktop applications such as Apple iTunes (for iOS) or Android App Installer are available for 
installing apps on the smartphone. The tester needs to download the app in this application 
and use a cable to install it from there to the smartphone. Most of these desktop applications 
also allow de-installation of the app. 

Installation can be performed using the following methods: 

● OTA (Over-the-Air) via Wi-Fi or Cellular Data 

● Data cable 

Some of the test conditions that can be considered include: 

● Installation, de-installation and upgrade on internal and external memory (if supported). 

● Re-installation of app when the “retain app data” option was chosen during the previous de-
installation. 

● Re-installation of app when the “retain app data” option was not chosen during the previous 
de-installation.  

● Cancelling or interrupting the installation or de-installation, for example, by shutting down the 
mobile device during the process or disconnecting from the internet. 

● Resuming interrupted installation, de-installation and upgrade after cancelling or interrupting. 

● Permissions-related testing. For example, some apps request permission to use the address 
book. This important test must verify app behavior if the user denies permission. For example, 
is there a corresponding message sent to the user? 

● Update the app and verify that no data is lost. 

Some apps require jailbroken (iOS) or rooted (Android) devices which give the user the administrative 
rights over the device. Most platform providers do not support jailbreaking/rooting as it may have legal 
consequences. An app not requiring jailbreaking/rooting may not need to be tested for the 
jailbreaking/rooting devices. 

3.1.2 Stress Testing 

Stress testing is focused on determining the performance efficiency of the application when subjected 
to conditions beyond normal load. The stress test is this context is targeted only at the mobile device. 
Stress tests of the backend are described in the ISTQB® Performance Testing syllabus 
([ISTQB_CTFL_PT_2018]) so that further information can be referenced there as needed. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 29 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Some of the test conditions that can be considered for stress testing include:  

● high CPU-usage 

● out-of-memory 

● low disk space 

● battery stress 

● failures 

● poor bandwidth 

● very high number of user interactions (real world network conditions may need to be simulated 
for this) 

Some of these stressful conditions can be created using tools such as Monkey. This is a command 
line tool that runs over the ADB shell command line [URL3] or, if possible, manually, e.g., by using big 
files or other apps with high CPU-usage or memory consumption. 

3.1.3 Security Testing 

Since security testing is a complex topic, the ISTQB® has a separate specialist syllabus on this subject 
[ISTQB_CTAL_SEC_2016]. Principal security issues for mobile apps include: 

● Access to sensitive data on the device. 

● Unencrypted information transfer or unsafe storage.  

Some of the test conditions that can be considered for security testing include: 

● Testing inputs for code injection and overflow. 

● Encryption of transferred data. 

● Encryption of locally stored data. 

● Deletion of temporary data after use or after an abnormal end. 

● Clearing text in password fields. 

Top 10 mobile related vulnerabilities from the Open Web Application Security Project (OWASP) 
should also be explored [URL2]. 

3.1.4 Performance Testing 

If the user installs the app and it does not appear fast enough (e.g., less than or equal to 3 seconds) it 
may get de-installed in favor of another alternative app. Time and resource consumption aspects are 
important success factors for an app and performance testing is carried out to measure these aspects.  

Performance efficiency needs to be tested on the device itself in addition to interaction with the 
backend system and other mobile devices. 

Performance testing of the whole system should be performed as defined in the test strategy and is 
not mobile specific. Please refer to the ISTQB® specialist syllabus on performance testing 
[ISTQB_CTFL_PT_2018] for further details.  

The performance test of the app itself should contain chronometry for the most important workflows. 
Some examples for the workflows of an online-banking app are: “Login”, “Change address” or “Bank 
transfer with PIN and TAN”. The tester should then compare this chronometry with similar apps. 

Besides chronometric measures it is important to consider the perceived performance by the user. 
User experience can have a huge impact on how long the user is willing to wait for a certain function 
to complete. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 30 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

3.1.5 Usability Testing 

Usability is very important for mobile apps because data shows that a large number of users de-install 
their apps within a few minutes of installing because of poor usability or performance, see [URL4]. 

Due to this it is recommended that user experience (UX) design considers the look and feel of the 
platform which the app is to be used on. If the UX does not conform with the user’s expectations for 
their platform of choice, it can have a strong negative impact. Thus, a tester should be aware of the 
look and feel on the platform used. 

Usability tests can be conducted by a tester using various available heuristics and test tours. 
Considering personas is also a helpful support for usability testing. If required, a usability lab can also 
be used for this purpose. 

In projects, findings identified during the usability test are mostly just findings and not defects. The 
tester must have the ability to explain the findings to the team, Product Owner or similar stakeholders. 
To achieve satisfactory usability, an app should: 

● be self-explanatory and intuitive. 

● allow user mistakes. 

● be consistent in wording and behavior. 

● abide by the design guidelines of the platforms. 

● make needed information visible and reachable in each screen size and type. 

Please refer to the ISTQB® specialist syllabus in usability testing [ISTQB_FLUT_2018] for further 
details. 

3.1.6 Database Testing 

Many apps need to store data locally using various data storage mechanisms such as flat files or 
databases. Some of the test conditions to be considered for the database testing of mobile apps 
include: 

● Validation of data storage issues: 

o Synchronization 

o Upload conflicts 

o Data security 

o Constraints on the data 

o CRUD (Create/Read/Update/Delete) functionality 

o Search 

● Data integration testing for data provided by the device (e.g., contacts) or by third-party apps 

(e.g., pictures, videos and messages). 

● Performance of storing the data on the device. 

3.1.7 Globalization and Localization Testing 

Internationalization (I18N) /Globalization testing of the application includes testing an app for different 
locations, formats for dates, numbers and currency, and replacing actual strings with pseudo-strings. 

Localization (L10N)  testing includes the testing of an app with localized strings, images and workflows 
for a particular region. For example, Russian and German words could be much longer than those in 
other languages. Since mobile devices have different screen sizes and resolutions, limited screen 
sizes may lead to problems with translated strings. These issues should be checked as standard 
globalization/localization tests. 

A very important aspect to be checked is the date format used, such as YEAR – MONTH – DAY or 
DAY – MONTH – YEAR. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 31 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

3.1.8 Accessibility Testing 

Accessibility testing is performed to determine the ease by which users with disabilities can use a 
component or system. For mobile apps this can be done using device accessibility settings and testing 
the app for each setting. 

Accessibility guidelines are available from platform vendors and these should be used. For example, 
both Google [URL5] and Apple [URL6] have published accessibility guidelines for their respective 
platforms. Taking feedback from people who require accessibility is also helpful. 

For mobile web an accessibility guide has been published by the W3C, which should be considered 
[URL7]. 

3.2 Additional Test Levels applicable for Mobile Applications 

In addition to the usual levels of testing from component through to acceptance testing described in 
[ISTQB_CTFL_2018], there is also a need for additional test levels for mobile application testing. 

3.2.1 Field Testing 

Some mobile applications need field testing to ensure that they function correctly in the expected 
usage scenario of real users. This could include testing on various networks and on different types of 
communication technologies such as Wi-Fi or cellular data. 

Field tests should include the use of mobile towers, networks, Wi-Fi, and cellular data switching while 
the app is in use. Tests should be performed with varying download speeds and signal strengths, and 
include the handling of blind spots. 

Field testing requires careful planning and the identification of all items required to perform the tests, 
such as appropriate device types, Wi-Fi, cellular data plans on various carriers and access to various 
modes of transport required to give adequate coverage. In addition, the routes and modes of 
transport, and the time of the day when the tests are to be executed need to be scheduled. 

Usability of an app is another important aspect that needs to be covered while conducting field testing. 
Tests should incorporate environmental factors such as temperature and similar conditions related to 
usage scenario. 

3.2.2 Testing for Application Store Approval and Post-release Testing 

Before an app is sent for publishing some checklist/based tests must be passed to assure the 
approval of the application stores. If the release is an upgrade, then upgrade related tests should also 
be run. 

Checklists are typically based on guidelines, such as those specific to operating systems, for user 
interface design, and for using the libraries and APIs provided by application stores. 

The approval process may take some time after submission. If any issues are found during the 
approval process, a new version may need to be submitted, which will require additional time to 
resolve. This situation requires careful consideration during project planning and testing. 

A further level of testing is “post-release” testing. Testing at this level includes downloading and 
installing the application from application stores. 

3.3 Experience-based Testing Techniques 

3.3.1 Personas and Mnemonics 

Personas are fictional characters which represent real customers. They have motivations, 
expectations, problems, habits and goals and it helps to use them when real user behavior needs to 
be mimicked. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 32 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

A persona could have a name, gender, age, income, an educational background, and a location. In a 
mobile context they may use other apps, check their mobile device x times an hour and can have 
other devices and personal traits. 

A mnemonic is a memory aid to remember something. In the context of testing, every letter in a 
mnemonic stands for a technique, a testing method or a focal point for testing. An example of a 
mnemonic is SFiDPOT [URL8]. Letters in the mnemonic have the following meanings: 

S – Structure (e.g., user interface elements, other application elements and their order and call 
hierarchy) 

F – Function (e.g., desired features are working, available, and functioning according to the 
requirements etc.) 

i - Input (e.g., all required inputs are available and processed as they should be, such as inputs from 
the keyboard, sensors, and camera) 

D – Data (e.g., the data is stored (also on SD card), modified, added, and deleted as defined in the 
requirements) 

P – Platform (e.g., the specific operating system functions are available depending on device settings, 
includes store for downloading the app) 

O – Operations (e.g., the activities of the normal user are available, such as moving between mobile 
carrier networks and Wi-Fi) 

T – Time (e.g., handling and display of time zones, time, and dates) 

A mnemonic and heuristic specifically dealing with mobile is I SLICED UP FUN  [URL9]. Letters in the 
mnemonic have the following meanings 

I – Inputs 

S – Store 

L – Location 

I – Interactions and interruptions 

C – Communication 

E – Ergonomics 

D – Data 

U – Usability 

P – Platform 

F – Function 

U – User scenarios 

N – Network 

3.3.2 Heuristics 

A heuristic approach is a “rule of thumb” approach to problem solving, learning and discovery that 
employs a practical method. This does not guarantee to be optimal or perfect, but can be considered 
as sufficient for achieving the immediate goals. 

There are many heuristics for mobile testing. Most mnemonics can be used as heuristics, but not 
every heuristic is a mnemonic. 

3.3.3 Tours 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 33 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Tours are used in exploratory testing to enable an application to be explored from a specific point of 
view and focus. They can be performed to understand how an application works and to create models 
for the workflow. Tours provide an effective method for field testing.  

An example of a tour is the Landmark tour where a user mimics the visits of a tourist in a city by going 
to well-known landmarks. The following table shows how visits made on the tour can be used as 
analogies for the steps to follow in mobile testing.  
 

Visits in the Landmark tour Analogy for mobile testing  

The historical quarter Legacy code 

The business district  
Rush hour 

Business logic of the app  
App startup and shutdown 

The tourist quarter  Part of the app used by newcomers 

The hotel quarter  Parts of the app which are only active in sleep mode 

 

Combining session-based testing (see section 3.3.4) with tours, including the use of heuristics and 
mnemonics, helps in enhancing the effectiveness of mobile application testing.  

The following table shows some good examples of tours for app testing and the areas they cover for 
giving testing ideas. Some of these are to be found in [Kohl17]. 
 

Tour for app testing Subject covered 

Supermodel Look and feel and usability 

Landmark The most important features in the app 

Sabotage Robustness 

Feature New features 

Scenario Whole workflow in the app in combination with user stories 

Connectivity Connectivity used, such as Wi-Fi, GSM 

Location Correct language, dates, numbers 

Light Visibility in different lighting conditions, such as dark, outside, red light. 

Low battery Data losses in the app caused by of low energy levels. 

Further tours for app testing Subject covered in [Kohl17] 

Gesture Use all gestures wherever possible  

Orientation Change orientation  

Change your mind Go back  

Motion Do various types of movements  

Location Move around 

Connectivity Change connection types or locations by moving 

Comparison Compare with other type of devices 

Consistency Check consistency of screens, GUI 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 34 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

3.3.4 Session-Based Test Management (SBTM) 

Session-based test management (SBTM) enables exploratory testing to be managed in a time-boxed 
fashion. A session consists of three tasks: 

● Session setup 

● Test design and execution 

● Issue investigation and reporting 

SBTM typically uses a session sheet containing a test charter that provides test objectives. 
Additionally, the session sheet is used to document the test execution activities carried out.  

Exploratory testing is an experience-based test technique which can be an effective approach for 
testing mobile applications. Experience-based test techniques are described in [ISTQB_CTFL_2018]. 

3.4 Mobile Test Process and Approaches 

3.4.1 Test Process 

The main activities of the ISTQB® test process are described in [ISTQB_CTFL_2018] and are also 
applicable to mobile application testing.  

There are additional aspects which are specific to mobile testing which should always be considered 
as part of the ISTQB® test process. 

Main group of activities 
in the test process 

Typical areas to consider for mobile testing Syllabus reference 

Test planning • Device combinations that need to be 
tested. 

• Use of mobile emulators and mobile 
simulators as part of the test environment.  

• Special challenges in mobile app testing.  

• Test types specifically required for mobile 
application testing.  

 
 

• Section 4.3 
 

• Section 1.7 

• Section 3.2 

Analysis and design • App Stores Approval testing.  

• Field testing.  

• Device compatibility. 

• Kind of labs to be used. 

• Test types specifically required for mobile 
application testing.  

• Section 3.2.2 

• Section 3.2.1 
 
 

• Section 3.2 

Test Implementation and 
Test Execution 

• Field testing.  

• Download and installability post-release 
testing.  

• Experience-based techniques.  

• Section 3.2.1 

• Section 3.1.1 
 
[ISTQB_CTFL_2018] 

Test Implementation and 
Test Execution 

• Tests are based on platform-guidelines for 
the user interface and the application 
stores.  

• Tests based on guidelines will typically be 
run by the platform providers for their 
application store approval process. 

• It is recommended to run these as 
application provider before handing over 
to the platform providers in order to avoid 
possible rejection. 

 

 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 35 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

3.4.2 Test Approaches 

Mobile application testing includes activities to be performed by developers as well as testers. 

Determining the appropriate depth of testing per test level, (i.e., component test, integration test, 
system test, field test, application store approval, post-release and user acceptance testing) are 
important for delivering good quality products. The depth of testing needed per test level depends on 
many factors, such as app architecture, app complexity and intended user audience. 

Mobile development platforms provide a variety tools to support testing at the various levels. 
Understanding the tools and how they can be applied at a given level are very important. For example, 
a mobile simulator and/or mobile emulator can be used at the component testing level if there is a 
need to take advantage of the platform-provided framework and instrumentation APIs. In addition, 
mobile simulators and/or mobile emulators can be used at the system testing level when actual 
devices are not available. This enables testing for functionality, limited aspects of usability as well as 
the user interface. 

Furthermore, early implementation can serve as a key point to ensure that the devices are setup 
correctly and all the prerequisites for the execution will be met on time. 

Unit and integration tests are also important, as well as manual testing, (especially in the field-testing 
stage). It is very common for mobile apps to flip the Test Pyramid [Knott15]. This means that there can 
be many manual tests. 

  



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 36 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

4. Mobile Application Platforms, Tools and Environment – 
80 mins 

 

Keywords 

emulator, field testing, proximity-based testing, remote test lab, simulator  

 

Learning Objectives for Mobile Applications Platforms, Tools and Environment 
 

4.1 Development Platforms for Mobile Applications 
MAT-4.1.1 (K1) Recall the development environments used for mobile application development. 
 
4.2 Common Development Platform Tools 
MAT-4.2.1 (K1) Recall some of the common tools supplied as part of application development 

platforms. 
HO-4.2.1 (H1) Use tools from the software development kit to take screenshots, extract a log 

and simulate incoming events. 
 

4.3 Emulators & Simulators 
MAT-4.3.1 (K2) Understand the differences between emulators and simulators. 
MAT-4.3.2 (K2) Describe the use of emulators and simulators for mobile application testing. 
HO-4.3.2 (H1) Create and run a simulated/emulated device, install an app and execute some 

tests on it. 
 

4.4 Setting up a Test Lab 
MAT-4.4.1 (K2) Distinguish between various approaches to set up a test lab. 
 
 

4.1 Development Platforms for Mobile Applications 

Integrated development environments (IDEs) are available on the market for various mobile app 
developments. These IDEs have various tools that help in designing, coding, compiling, installing, de-
installing, monitoring, emulating, logging and testing apps. 

For example, Android Studio may be used for Android app development and for iOS app development 
Xcode may be used. These differ from normal IDEs by the added support they offer for the mobile 
platforms. 

Some cross-platform development frameworks are also available which helps in the development of 
mobile applications. These run on multiple platforms and do not specifically require coding. 

4.2 Common Development Platform Tools 

Software development kits usually provide various utilities which are helpful in developing and testing 
applications. These utilities span a wide range of purposes, such as taking screenshots, extracting 
logs, sending random events and notifications to the device, monitoring various parameters such as 
memory and CPU utilization, and creating virtual devices. 

Some examples of such tools are Android Virtual Device (AVD) Manager, Android Debug Bridge 
(ADB), and Android Device Monitor for Android and Instruments for iOS. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 37 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

4.3 Emulators & Simulators 

4.3.1 Overview of Emulators & Simulators 

In the context of this syllabus, the terms emulator and simulator refer to mobile emulator or mobile 
simulator. The terms simulator and emulator are sometimes used interchangeably but incorrectly. For 
definitions please refer to the glossary in chapter 8. 

A simulator models the runtime environment, whereas an emulator models the hardware and utilizes 
the same runtime environment as the physical hardware. Applications tested on a simulator are 
compiled into a dedicated version, which works in the simulator but not on a real device. Thus, it is 
independent of the real OS.  

By contrast, applications compiled to be deployed and tested on an emulator are compiled into the 
actual byte-code that could be also used by the real device. 

Simulators and emulators are very useful in the early stage of development as these typically integrate 
with development environments and allow quick deployment, testing, and monitoring of applications. 

Simulators are sometimes also used as replacement for real devices in testing. However, this is even 
more limited than the usage of emulators, as the application tested on a simulator differs at byte-code 
level from the application that will be distributed. 

Emulators are also used to reduce the cost of test environments by replacing real devices for some of 
the testing. An emulator cannot fully replace a device because the emulator may behave in a different 
manner than the mobile device it tries to mimic. In addition, some features may not be supported such 
as (multi)touch, accelerometer, and others. This is partly caused by limitations of the platform used to 
run the emulator. 

4.3.2 Using Emulators and Simulators 

Using emulators and simulators for mobile testing can be helpful for various reasons. 

Each mobile operating system development environment typically comes with its own bundled 
emulator and simulator. Third party emulators and simulators are also available. 

A tester may use whichever emulator or simulator suits their purpose. Using the emulator or simulator 
requires launching them, installing the necessary app on them and then testing the app as if it were on 
the actual device. 

Usually emulators and simulators allow the setting of various usage parameters. These settings might 
include network emulation at different speeds, signal strengths and packet losses, changing the 
orientation, generating interrupts, and GPS location data. Some of these settings can be very useful 
because they can be difficult or costly to replicate with real devices, such as global GPS positions or 
signal strengths. 

Connecting to the emulators for the purpose of installation might require using command line tools 
such as for Android Debug Bridge (ADB) for Android or connecting from within the integrated 
development environment as with Xcode or Android Studio. 

  



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 38 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

4.4 Setting up a Test Lab 

The following approaches are used to set up a mobile test lab: 

On-premise lab 

With an on-premise lab all the devices, emulators and simulators are located on site. Device selection 
can be done on the basis of various factors such as rank of the device (as found in Google or other 
analytics), operating system and versions, screen dimensions and density, availability and cost, 
special features, and importance in targeted audience. 

On-premise lab advantages include the availability of devices for specific proximity-based testing and 
sensor specific aspects such as battery, touch, and enhanced security. 

Setting up this type of lab may require large budgets depending on the devices to be procured and 
maintained. Additional challenges include timely availability and difficulties with testing in different 
locations and environments. 

Remote test lab 

These labs are important and helpful for testing when devices or networks are not physically available 
on site. Remote device access (RDA) allows access via a network connection to various devices 
hosted in the provider’s data center. Each potential RDA provider needs to be evaluated for 
compliance with the requirements, especially for security. 

Some remote labs provide the following additional features: 

● Dedicated physical device versions (e.g., Samsung mobile devices lab). 

● Generic devices for a particular operating system and version only. 

● Robotic arms for performing touch and gesture related operations. 

● Virtual private network (VPN) connections to give access to the device. 

● Cellular connections with various cellular network providers. 

● Automation tools and services. 

Some of the factors to be kept in mind when using remote test labs include slow device 
responsiveness and limited options for interacting with devices such as multi-touch and gestures. This 
can be cost-effective for sporadic use, but is generally more expensive if used for extended periods of 
time for a wide range of devices. 

Other factors include on-demand platform availability compared to the need to obtain access to 
missing devices in the local lab and scalability of the lab, as it can grow and shrink as the project 
evolves. 

Test scenarios that include sensors such as NFC/Bluetooth or battery consumption are often hard to 
test in the cloud. However, the different geographical locations of remote labs may help with tests that 
need network and GPS connections. 

A test lab can utilize either one or a combination of the two approaches, depending on the type of 
tests that need to be performed. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 39 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

5. Automating the Test Execution – 55 mins 
 

Keywords 

device-based testing, test report, user-agent based testing 
  

Learning Objectives for Automating the Test Execution 

 

5.1 Automation Approaches 
MAT-5.1.1 (K2) Distinguish between common automation approaches and frameworks for mobile 

application testing. 
 

5.2 Automation Methods 
MAT-5.2.1 (K2) Describe various automation methods for testing mobile apps. 
 
5.3 Automation Tools Evaluation 
MAT-5.3.1 (K1) Recall the various parameters to be considered during the evaluation of mobile 

testing automation tools. 
 
5.4 Approaches for setting up an Automation Test Lab 
 
MAT-5.4.1 (K2) Distinguish between common approaches of creating test labs with advantages 

and disadvantages with respect to test automation. 
 
 

5.1 Automation Approaches 

Various automation approaches and frameworks exist that can be used in mobile application testing. 
The choice of approach will partly be determined by the type of application.  

Two common test automation approaches used are: 

● User-agent based testing 

● Device-based testing 

User-agent based testing utilizes the user-agent identifier string sent by the browser to spoof a 
particular browser on a particular device. This approach can be used for executing mobile web 
applications. Device-based testing on the other hand involves running the application under test 
directly on the device. This approach can be used for all types of mobile applications.  

The application type can also determine the test automation framework that would be suitable for that 
application. Mobile web can be tested using the usual web application automation tools on the 
desktop, whilst native apps might need specific tools. Platform providers may also provide automation 
tools dedicated for the platform. 

Automation approaches used for conventional applications are often applicable to mobile applications 
as well. These include capture/playback, data-driven, keyword-driven and behavior-driven testing as 
described in the ISTQB® Foundation Level syllabus [ISTQB_CTFL_2018] and in the ISTQB® 
Advanced Level Specialist Test Automation Engineer syllabus [ISTQB_CTAL_TAE_2016]. 

Key capabilities that a mobile application testing framework should typically include are: 

● Object identification 

● Object operations 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 40 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

● Test reports 

● Application programming interfaces and extendable capabilities 

● Adequate documentation 

● Integrations with other tools 

● Independent of test development practice 

5.2 Automation Methods 

To develop automated tests, the tester needs to understand the automation script recording or 
creation mechanism, and how to access and interact with the application's graphical objects such as 
buttons, list boxes, and input fields.  

Several methods exist for identifying a graphical object used for the mobile test automation. These 
include image recognition, OCR/text recognition, and object recognition (web or native, depending on 
the app type). 

A Mobile Application Tester needs to not only practice the graphical object detection and identification, 
but also to understand which object identification method will be the most capable in enabling 
successful tests to be run on a large variety of mobile devices, in parallel and continuously. 

Key differences between the script creation methods are: 
 

Item of Comparison Object Identification Image/OCR Comparison 

Reliability As long as the identifier is constant 
the screen layout can be changed. 
The risk is that objects can be 
identified and interacted with in the 
code while being hidden from the 
user. This may lead to false negative 
test results.   

Images can be scaled according to 
screen size, but tests will fail as soon 
as the layout changes. 

User experience Usually manual scripting is required, 
at least to improve recorded scripts 
for readability and maintainability. 

Full GUI-based testing without the need 
for scripting. 

Execution speed Tends to be faster than Image/OCR 
comparison, especially when using 
native tools provided by the system 
manufacturer.  

Tends to be slower due to the need to 
compare the screen pixel by pixel with 
a baseline image. 

Maintenance Depends on the quality of the test 
scripts. 

Mainly in providing changed baseline 
images. 

Authoring challenge Knowledge required of the scripting 
language and of software design 
methods to build a sustainable 
automation solution. 

Generation of baseline images, 
especially when app changes often. 

5.3 Automation Tools Evaluation 

To be successful in creating test automation solutions, the test automation teams need to choose an 
appropriate set of tools. Understanding the key differences of the available tools and their suitability for 
the project requirements needs to be considered (see also [ISTQB_CTAL_TAE_2016]). 

The evaluation parameters for test automation tools can be broken into two categories: 

● Organizational fit 

● Technical fit 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 41 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Organizational fit parameters are described in chapter 6.2 of the ISTQB® Foundation Level syllabus 
[ISTQB_CTFL_2018]. 

Technical fit parameters include the following: 

● Test automation requirements and complexities such as the use of new features like FaceID, 
fingerprint and chatbots by the app. 

● Test environment requirements, such as varying network conditions, import or creating test 
data, and server-side virtualization. 

● Test reporting and feedback loop capabilities. 

● The ability of the framework to manage and drive execution on a large scale either locally or in 
a test lab in the cloud. 

● Integration of the test framework with other tools used in the organization. 

● Support and documentation availability for current and future upgrades. 

5.4 Approaches for setting up an Automation Test Lab 

When performing mobile application testing, developers and testers have choices around the device 
test lab they would use to target their test automation against. 

● On-premise device test lab 

● Remote device test lab 

Various combinations of these approaches can be applied. Their principal characteristics are 
described and compared in section 4.4. 

On-premise device test labs are generally difficult and time consuming to maintain. Having devices 
locally in parallel with emulators and simulators would best serve the early development and testing 
phases of the mobile app. 

When reaching a more advanced stage of the app development, teams need to perform full regression 
test, functional tests, and non-functional tests. These tests are best executed on a full device lab. This 
is where a remote device test lab is managed, continuously updated, and maintained in the cloud. 
Such remote device test labs complement an on-premise device test lab and ensure that sufficient 
combinations of device and operating system are available and up to date. By making use of 
commonly available remote device test labs, teams get access to a larger set of supported capabilities 
including richer test reports and advanced test automation capabilities. 

Lastly, when executing at scale through a test automation framework or through a continuous 
integration job (CI), stability of the overall test lab is key for test efficiency and reliability. Such labs are 
typically designed to ensure that devices and operating systems are always available and stable. 

Remote device test labs are not always necessary in the later development stages of the app. Well 
designed and maintained on-premise device test labs can be as good as or better than any remote 
device test lab.  



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 42 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

6. References 

6.1 ISTQB® Documents 

● [ISTQB_CTFL_2018]:  
ISTQB® Certified Tester – Foundation Level Syllabus – Version 2018 

● [ISTQB_FLAT_2014]: 
ISTQB® Certified Tester – Foundation Level Extension Syllabus – Agile Tester – Version 2014 

● [ISTQB_FLUT_2018]: 
ISTQB® Certified Tester – Foundation Level Specialist Syllabus – Usability Testing – Version 
2018 

● [ISTQB_CTFL_PT_2018]: 
ISTQB® Certified Tester – Foundation Level Specialist Syllabus – Performance Testing – 
Version 2018  

● [ISTQB_CTAL_SEC_2016]: 
ISTQB® Certified Tester – Advanced Level Specialist Syllabus – Security Testing –  
Version 2016 

● [ISTQB_CTAL_TAE_2016]: ISTQB® Certified Tester – Advanced Level Specialist Syllabus - 
Test Automation Engineer - Version 2016  

● [ISTQB_GLOSSARY]: 
ISTQB®’s Glossary of Terms used in Software Testing, Version 3.2 

6.2 Referenced Books 

● [Knott15] Knott, D., “Hands-On Mobile App Testing”, Addison-Wesley Professional, 2015, 
ISBN 978-3-86490-379-3 

● [Kohl17] Kohl, J. , “Tap into mobile application testing”, leanpub.com, 2017, 
ISBN 978-0-9959823-2-1 

6.3 Further Books and Articles 

• Boris Beizer, “Black-box Testing”, John Wiley & Sons,  
1995, ISBN 0-471-12094-4 

• Rex Black, “Agile Testing Foundations”, BCS Learning & Development Ltd: Swindon UK, 
2017, ISBN 978-1-78017-33-68 

• Rex Black, “Managing the Testing Process”(3e), John Wiley & Sons: New York NY,  
2009, ISBN 978-0-470-40415-7 

• Hans Buwalda, “Integrated Test Design and Automation”, Addison-Wesley Longman,  
2001, ISBN 0-201-73725-6 

• Lee Copeland, “A Practitioner's Guide to Software Test Design”, Artech House,  
2003, ISBN 1-58053-791-X 

• Rick David Craig, Stefan P. Jaskiel, “Systematic Software Testing”, Artech House,  
2002, ISBN 1-580-53508-9 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 43 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

6.4 Links (Web/Internet) 

Disclaimer: All Links working as of 5 January 2019 

● [URL1] http://gs.statcounter.com/ 

● [URL2] www.owasp.org 

● [URL3] https://developer.android.com/studio/test/monkey 

● [URL4] https://www.google.de/amp/s/techcrunch.com/2016/05/31/nearly-1-in-4-people-
abandon-mobile-apps-after-only-one-use/amp/ 

● [URL5] https://www.google.com/accessibility/  

● [URL6] https://www.apple.com/uk/accessibility/ 

● [URL7] https://www.w3.org/WAI/standards-guidelines/mobile/ 

● [URL8] https://www.slideshare.net/karennjohnson/kn-johnson-2012-heuristics-mnemonics 

● [URL9] http://www.kohl.ca/articles/ISLICEDUPFUN.pdf 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 44 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

7. Appendix A – Learning Objectives/Cognitive Level of 
Knowledge 

The following learning objectives are defined as applying to this syllabus. Each topic in the syllabus 
will be examined according to the learning objective for it. 

7.1 Level 1: Remember (K1) 

The candidate will recognize, remember and recall a term or concept. 

Keywords: Identify, remember, retrieve, recall, recognize, know 

Examples: 

Can recognize the definition of “failure” as: 

● “Non-delivery of service to an end user or any other stakeholder” or 

● “Deviation of the component or system from its expected delivery, service or result” 

7.2 Level 2: Understand (K2) 

The candidate can select the reasons or explanations for statements related to the topic, and can 
summarize, compare, classify, categorize and give examples for the testing concept. 

Keywords: Summarize, generalize, abstract, classify, compare, map, contrast, exemplify, interpret, 
translate, represent, infer, conclude, categorize, construct models 

Examples: 

Can explain the reason why test analysis and design should occur as early as possible: 

● To find defects when they are cheaper to remove 

● To find the most important defects first 

Can explain the similarities and differences between integration and system testing: 

● Similarities: the test objects for both integration testing and system testing include more than 
one component, and both integration testing and system testing can include non-functional 
test types 

● Differences: integration testing concentrates on interfaces and interactions, and system testing 
concentrates on whole-system aspects, such as end-to-end processing 

7.3 Level 3: Apply (K3) 

The candidate can select the correct application of a concept or technique and apply it to a given 
context. 

Keywords: Implement, execute, use, follow a procedure, apply a procedure 

Examples: 

● Can identify boundary values for valid and invalid partitions 

● Can select test cases from a given state transition diagram in order to cover all transitions 

Reference (for the cognitive levels of learning objectives): 

Anderson, L. W. and Krathwohl, D. R. (eds) (2001) A Taxonomy for Learning, Teaching, and 
Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Allyn& Bacon: Boston MA 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 45 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

8. Appendix B – Glossary of Domain-Specific Terms 
 

Glossary Term  Definition 

2G  
 

2nd generation of mobile wireless telecommunication technology. 

3d-touch See “Force Touch” 

3G  3rd generation of mobile wireless telecommunication technology. 

4G  4th generation of mobile wireless telecommunication technology. 

5G  5th generation of mobile wireless telecommunication technology. 

ADB  Android Debug Bridge (ADB) - command-line tool that allows 
communication with a device. 

advertisement-based apps 
  

An app monetization model where the development organizations 
earn money by advertisements shown within the app. 

Android Device Monitor (ADM) 
 

A standalone tool that provides a user interface for Android app 
debugging and analysis tools. 

Android Studio  
 

The official integrated developer environment (IDE) for Android. 
Android Studio provides tools for building apps on every type of 
Android device. 

app shortcut  
 

A shortcut to a specific set of actions defined in an application by 
application developers on Android 7.1 or higher. 

application store  
 

An application distribution platform where developers can upload 
their applications and users can search for applications to download 
and install them on their platform. 

aspect ratio  The ratio of width to height of a display or image. 

asynchronous communication  
 

A type of communication in which data can be transmitted 
intermittently rather than in a steady stream. 

AVD  Acronym for Android Virtual Device. 

backend system  A server system that provides functionality for other systems. 

background app  An app that is running in the background.  

backward compatibility  The capability of an app to work on previous versions of platforms.  

barcode  An optical, machine-readable representation of data. 

basic phone  A mobile phone with minimal feature such as making calls, storing 
phone numbers, sending SMS, clock, and alarm. 

blind spot  A location without wireless telecommunication network. 

blocking/do-not-disturb mode  
 

An operational mode of mobile devices that can be activated by the 
user to suppress certain features - common notifications and voice 
calls. 

Bluetooth  A near-range wireless communication technology. 

byte-code  An instruction set designed for efficient execution by a software 
interpreter. Also called portable code or p-code. 

cellular data  Data transferred over a cellular network. 

cellular network  A cellular network is a network created of multiple independent but 
connected cells. 

companion device  A computer device designed to work in cooperation with a 
dependent smart device. 

CPU frequency  The processor clock rate. 

cross-platform development 
framework  

A framework to develop an app for various platforms using the same 
code base. 

CRUD  Mnemonic for Create/Read/Update/Delete which is applied to data. 

data integrity  The accuracy and consistency of data over its entire life-cycle, 
including storage, processing, and retrieval. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 46 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Glossary Term  Definition 

data synchronization  The process of bringing data into the same state across two or more 
sources. 

data validation  The evaluation if the data is correct, accurate, consistent and useful. 

dead spot  See “blind spot". 

device fragmentation  The diversity of available device, their unique hardware 
configuration, and the impact thereof on the apps and user 
experience. 

DPI/PPI  Acronym for Dots/pixels per inch - a number expressing the density 
of a display, either in dots or pixels. 

emulator  A software application that mimics the behavior of hardware. 

enterprise app  An application created to be used internally within an organization 
and not intended for public use. 

external memory  An additional memory that is added to the device via a standard 
interface. Currently SD-Cards are most common for mobile phones. 

fat client  In client/server applications, a client which has been designed to 
handle some or most of the data processing. 

feature phone  A class of mobile phones which provides more functions than a 
basic phone, e.g., a browser, but does not provide the full 
functionality of a smartphone. 

flat file  A file having no internal hierarchy. 

flight mode  A special operation mode for mobile devices where the radio 
transmitters are deactivated to prevent interference with flight 
operation/communication systems.  

Force touch  A technology developed by Apple Inc. that enables trackpads and 
touchscreens to distinguish between different amounts of force being 
applied to their surfaces. 

foreground app  An app that is run in the foreground of the device for direct user 
interaction. 

freemium app  A business model in which users pay nothing to download the app 
and are offered optional in-app purchases. 

gesture  A certain interaction pattern, such as a pinch or swipe, to activate 
defined functions of the device. For example, a pinch is commonly 
used to zoom in an out on the smart device screen. 

globalization  See internationalization. 

GPS  Acronym for Global Positioning System - around the globe a network 
of satellites sends out time signals. By including the signal of at least 
3 satellites a receiver can calculate its relative position to the 
satellites via triangulation. 

GSM  Acronym for GSM (Global System for Mobile Communications, 
originally Groupe Spécial Mobile) is a standard developed by the 
European Telecommunications Standards Institute (ETSI) to 
describe the protocols for second-generation digital cellular networks 
used by mobile devices. Currently the most common standard for 
mobile communication in the world. 

GSM cell  A part of a GSM network that can be identified by its unique cell ID 

hybrid app  An application combining native and web technologies. Usually a 
hybrid app uses a native frame to be installed on the device to 
interact with device libraries and alike. Additionally, content is shown 
which is received from a web server. 

I18N  Numeronym (number-based word) for Internationalization. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 47 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Glossary Term  Definition 

IDE  Integrated development environment -  
A software application that provides comprehensive facilities to 
computer programmers for software development. 

in-app purchase  Extra content and features available directly from an app. 

instruments A performance analysis and testing tool included as part of the 
Xcode tool set. 

internal memory  A memory that is included in the device hardware. 

internationalization  The process of preparing an application to accommodate for various 
localized versions. 

interrupt  An event which occurs during another event. 

IoT appliance  Internet of Things. A device or, for example, a sensor of interest 
connected to the internet. 

jailbreaking  A privilege escalation for the purpose of removing software 
restrictions imposed by an operating system. Term usually used on 
iOS. Similar to rooting an Android. 

L10N  Numeronym for localization. 

landscape mode  The device orientation in which the display width is larger than the 
height. 

library  A collection of non-volatile resources used by computer programs 
i.e., functions of the application. 

localization  The process of adjusting an app or product to a certain region by 
actions such as translation and format-adjustments. 

look and feel  Visual and emotional impression of something. 

Mnemonic  A memory aid. 

Mobile Application Mobile 
Testing 
  

Testing mobile apps. 

mobile device type  A classification of mobile devices by their basic features. Common 
classes include basic phone, feature phone, smartphone, phablet, 
tablet, and wearable. 

mobile emulator  Virtual representation of a hardware platform. For example, the 
Android emulator is virtual hardware that runs a real android OS 
image. The very same OS image could be deployed to hardware 
and will work, as it is the real OS. 

mobile OS  An operating system especially designed for mobile devices. 

mobile platform  An ecosystem around a mobile operating system, usually including 
development tools, the operating system itself and an application 
distribution channel. 

mobile space  An encapsulating term that includes anything in regard to mobile 
device technology, from the market and its players to the devices 
and apps. 

mobile simulator  A virtual runtime environment. For example, the iOS simulator 
pretends to be iOS but actually is not a real iOS. 

multi-platform applications  Applications designed and developed to run on multiple platforms 
using the same code base for all platforms. 

multi-tier  A backend application design approach where 2 or more servers 
provide specialized functionalities. 

multi-touch  A type of interaction with a device using various touch events in 
parallel. 

native app  An application especially developed for a certain platform, usually 
using platform APIs and platform-provided development tools. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 48 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Glossary Term  Definition 

NFC  Near Field Communication - a close range radio communication 
technology. 

notification  An announcement sent out by the device. 

OCR  Optical Character Recognition. The recognition of images of text 
contained in an electronic picture and its conversion to machine-
encoded text. 

on-premise lab  A lab that is physically located at the same place as the user of the 
lab. 

orientation  The placement of an object in the mobile commonly used to express 
the way the device is used. It can either be landscape or portrait. 

OTA  Over the air. Data transmission via radio signals, commonly used to 
refer to app installation to a device directly from a source not 
connected via cable.   

overflow  A situation where the incoming data exceeds what can be 
accommodated. 

paid app  An app that is monetized by selling it in app stores. 

Persona   A model/archetype for a certain user group. 

portrait mode  A device orientation in which the display height is larger than the 
width. 

power consumption  The amount of energy consumed. 

power save mode  An operational mode of mobile devices that can be activated by the 
user or the device itself to conserve energy. 

power state  A user defined or predefined profile in regard to power consumption 
that can activated on a mobile device.  

preferences   The general device or application configuration parameters that can 
be changed by the user. 

pre-installed app  A mobile application that is installed by the device manufacturer. 
Usually the user is not able to de-install these applications. 

QR code  QR code (abbreviated from Quick Response Code) is the trademark 
for a type of matrix barcode (or two-dimensional barcode).  

remote device access  Interacting with a device physically located at a different location 
than its user, usually over the internet. 

retain app data  User-generated data and or content of the app is retained on the 
device when the application is de-installed in order to be accessible 
by other apps or when the same app is reinstalled. 

rooting  The process of gaining root access to the device operating system. 
Term is usually used on the Android platform. Similar to jailbreaking 
on iOS. 

run-time environment  Implementation of the execution model. Also known as runtime 
system. 

screen real-estate  The amount of space provided by the display. 

software development kit (SDK)  
  

A set of tools and libraries to develop software for a certain platform. 

sensitive data  Data that needs special protection, such as passwords and personal 
data. 

sensor  A device, module, or subsystem whose purpose is to detect events 
or changes in its environment and send the information to other 
electronics, frequently a computer processor. 

session  A time-boxed event. 

session sheet  A document to scope and record a test session. 

side-loading  The loading/installing of an application via a means other than an 
application store. 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 49 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

Glossary Term  Definition 

single-tier  A backend application design approach in which a single server 
provides all needed services for an application. 

smartphone  A handheld personal computer with a mobile operating system and 
an integrated mobile broadband cellular network connection for 
voice, SMS (Short message service; often referred to as text), and 
internet data communication. 

soft keyboard  
  

A virtual keyboard realized in software, presented to the user on a 
display. 

store-and-forward  A data synchronization approach where the data is stored locally 
and forwarded to the server when there is an appropriate network 
connection. 

synchronous communication   A data transfer method in which data flows are sent (upstream) and 
received (downstream) at the same speed and is spaced by timing 
signals. 

tablet  A type of mobile device, commonly used for devices with screens of 
7”and larger. 

thin client  In client/server applications, a client designed to be especially small 
so that the bulk of the data processing occurs on the server. 

third-party marketplace  An app distribution platform not operated by a platform provider. 

transaction-based apps  An application in which the user pays per transaction. 

upload conflict  An error trying to upload a file which is already present at the upload 
destination. 

viewport size  A virtual screen size used by the browser to adjust the layout to the 
screen. 

Virtual Private Network (VPN) An encrypted private channel via a public network. 

wearable  A computer device worn on the body such as a watch or glasses. 

web app  An application hosted on the internet used via a browser. 

Xcode  An integrated development environment provided by Apple to 
develop OSX and iOS applications. 

 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 50 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

9. Index 
 

2G, 44 
3d-touch, 44 
3G, 44 
4G, 44 
5G, 44 
abnormal end, 26 
accessibility, 26 
accessibility testing, 30 
ADB, 44 
ADM, 44 
advertisement-based appl, 12 
advertisement-based application, 44 
always-connected apps, 15 
Android Device Monitor, 44 
Android Studio, 44 
app shortcut, 44 
application programming interface, 38 
application store approval, 30 
aspect ratio, 44 
asynchronous communication, 44 
asynchronous data transfer, 15 
AVD, 44 
backend system, 44 
background app, 44 
backward compatibility, 44 
basic phone, 13, 44 
blind spot, 44 
blocking mode, 44 
Bluetooth, 44 
browser.based app, 13 
byte-code, 44 
cellular data, 44 
cellular network, 44 
code injection, 26 
co-existence, 19, 25 
companion device, 44 
compatibility, 19 
connectivity, 19, 25 
continuous mode, 15 
CPU frequency, 44 
cross-browser compatibility, 19 
CRUD, 29, 44 
data integrity, 44 
data synchronization, 45 
data validation, 45 
database testing, 29 
dead spot, 45 
device features, 20 
device fragmentation, 45 
device-based testing, 38 
displays, 21 

dpi, 45 
emulator, 36, 45 
enterprise app, 12, 45 
exam, 9 
exploratory testing, 26, 33 
external memory, 45 
fat client, 15, 45 
feature phone, 13, 45 
fee-based app, 12 
field testing, 25, 26, 30 
flat file, 45 
flight mode, 45 
force touch, 45 
foreground app, 45 
free app, 12 
freemium app, 12, 45 
gesture, 45 
globalization, 29, 45 
GPS, 45 
GSM, 45 
GSM cell, 45 
guidelines, 30 
hands-on objectives, 9 
heuristic, 31 
hybrid app, 14, 24, 45 
I18N, 45 
IDE, 46 
in-app purchase, 46 
installability, 26, 27 
instruments, 46 
internal memory, 46 
internationalization, 29, 46 
interoperability, 19, 24 
interrupts, 22, 46 
IoT appliance, 13, 46 
jailbreaking, 46 
L10N, 46 
landscape mode, 46 
learning objectives, 9 
library, 46 
localization, 29, 46 
look and feel, 46 
mnemonic, 31, 46 
mobile application testing, 46 
mobile device type, 46 
mobile emulator, 46 
mobile OS, 46 
mobile platform, 46 
mobile simulator, 46 
mobile space, 46 
multi-platform applications, 46 



 

Certified Tester Specialist 
Mobile Application Testing Foundation Level 
Syllabus  

  
 

Version 2019 Page 51 of 51 
 3 May 2019 

© International Software Testing Qualifications Board 

 

multi-tier, 15, 46 
multi-touch, 46 
native app, 13, 24, 46 
never-connected apps, 15 
NFC, 47 
notifications, 23, 47 
OCR, 47 
on-premise lab, 37, 47 
orientation, 22 
OTA, 47 
overflow, 47 
paid app, 47 
partially-connected apps, 15 
performance efficiency, 26 
performance testing, 28 
permissions, 23 
persona, 30, 47 
portrait mode, 47 
post-release testing, 26, 30 
power consumption, 47 
power save mode, 47 
power state, 47 
ppi, 45 
preferences, 47 
pre-installed app, 47 
QR code, 47 
quick-access links, 23 
remote device access, 47 
remote test lab, 37 
retain app data, 47 
risk analysis, 11, 18 
risk mitigation, 11, 18 
risk-based testing, 11 
rooting, 47 
run-time environment, 47 
SBTM, 33 
screen orientation, 22 
screen real-estate, 47 
script creation, 39 
SDK, 47 
security testing, 26, 28 
sensitive data, 47 

sensors, 21, 47 
session, 47 
session sheet, 47 
session-based test management, 26 
settings, 24 
side-loading, 27, 47 
simulator, 36, 46 
single-tier, 15, 48 
smartphone, 13, 48 
soft keyboard, 48 
store-and-forward mode, 15, 48 
stress testing, 26, 27 
synchronous communication, 48 
synchronous data transfer, 15 
system under test, 19 
tablet, 13, 48 
temperature, 21 
test lab, 37 
test level, 26 
test process, 26, 33 
test pyramid, 26, 34 
test report, 38 
test strategy, 11, 16 
test type, 19 
thin client, 15, 48 
third-party marketplace, 48 
tour, 26, 32 
training time, 10 
transaction-based app, 12, 48 
upload conflict, 48 
usability, 19 
usability lab, 26 
usability testing, 26, 29 
user preferences, 24 
user-agent based testing, 38 
viewport, 48 
Virtual Private Network, 48 
VPN, 48 
wearable, 13, 48 
web app, 24, 48 
Xcode, 48 

 
 


